A parallel, multiscale domain decomposition method for the transient dynamic analysis of assemblies with friction

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Transient Domain Decomposition Method for the Analysis of Structural Dynamic Problems

Abstract. We propose and study, for structural dynamic problems, a domain decomposition method based on an augmented Lagrangian formulation. This method uses an inexact Uzawa algorithm to solve the linear system required at any time increment. The proposed algorithm is interesting, for parallel and vector applications, because it doesn’t need scalar products and has less operations by iteration...

متن کامل

Domain decomposition method for nonlinear multiscale analysis of structures

In this presentation we consider efficient numerical strategies designed to compute the evolution of large structures undergoing localized nonlinear phenomena such as plasticity, damage, cracking or microbuckling. Despite Newton-Schur-Krylov strategies which associate both Newton type solvers and domain decomposition methods (and especially non-overlapping ones [1,2]) provide an efficient frame...

متن کامل

a time-series analysis of the demand for life insurance in iran

با توجه به تجزیه و تحلیل داده ها ما دریافتیم که سطح درامد و تعداد نمایندگیها باتقاضای بیمه عمر رابطه مستقیم دارند و نرخ بهره و بار تکفل با تقاضای بیمه عمر رابطه عکس دارند

Output-only Modal Analysis of a Beam Via Frequency Domain Decomposition Method Using Noisy Data

The output data from a structure is the building block for output-only modal analysis. The structure response in the output data, however, is usually contaminated with noise. Naturally, the success of output-only methods in determining the modal parameters of a structure depends on noise level. In this paper, the possibility and accuracy of identifying the modal parameters of a simply supported...

متن کامل

Domain decomposition for multiscale PDEs

We consider additive Schwarz domain decomposition preconditioners for piecewise linear finite element approximations of elliptic PDEs with highly variable coefficients. In contrast to standard analyses, we do not assume that the coefficients can be resolved by a coarse mesh. This situation arises often in practice, for example in the computation of flows in heterogeneous porous media, in both t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computer Methods in Applied Mechanics and Engineering

سال: 2010

ISSN: 0045-7825

DOI: 10.1016/j.cma.2009.07.014